644,579 research outputs found

    Interplay between nanometer-scale strain variations and externally applied strain in graphene

    Get PDF
    We present a molecular modeling study analyzing nanometer-scale strain variations in graphene as a function of externally applied tensile strain. We consider two different mechanisms that could underlie nanometer-scale strain variations: static perturbations from lattice imperfections of an underlying substrate and thermal fluctuations. For both cases we observe a decrease in the out-of-plane atomic displacements with increasing strain, which is accompanied by an increase in the in-plane displacements. Reflecting the non-linear elastic properties of graphene, both trends together yield a non-monotonic variation of the total displacements with increasing tensile strain. This variation allows to test the role of nanometer-scale strain variations in limiting the carrier mobility of high-quality graphene samples

    Isotropic-Nematic Transition in Liquid-Crystalline Elastomers

    Full text link
    In liquid-crystalline elastomers, the nematic order parameter and the induced strain vary smoothly across the isotropic-nematic transition, without the expected first-order discontinuity. To investigate this smooth variation, we measure the strain as a function of temperature over a range of applied stress, for elastomers crosslinked in the nematic and isotropic phases, and analyze the results using a variation on Landau theory. This analysis shows that the smooth variation arises from quenched disorder in the elastomer, combined with the effects of applied stress and internal stress.Comment: 4 pages, including 4 postscript figures, uses REVTeX

    Reversible strain effect on the magnetization of LaCoO3 films

    Full text link
    The magnetization of ferromagnetic LaCoO3 films grown epitaxially on piezoelectric substrates has been found to systematically decrease with the reduction of tensile strain. The magnetization change induced by the reversible strain variation reveals an increase of the Co magnetic moment with tensile strain. The biaxial strain dependence of the Curie temperature is estimated to be below 4K/% in the as-grown tensile strain state of our films. This is in agreement with results from statically strained films on various substrates

    Nanoscale Bandgap Tuning across an Inhomogeneous Ferroelectric Interface

    Full text link
    We report nanoscale bandgap engineering via a local strain across the inhomogeneous ferroelectric interface, which is controlled by the visible-light-excited probe voltage. Switchable photovolatic effects and the spectral response of the photocurrent were explore to illustrate the reversible bandgap variation (~0.3eV). This local-strain-engineered bandgap has been further revealed by in situ probe-voltage-assisted valence electron energy-loss spectroscopy (EELS). Phase-field simulations and first-principle calculations were also employed for illustration of the large local strain and the bandgap variation in ferroelectric perovskite oxides. This reversible bandgap tuning in complex oxides demonstrates a framework for the understanding of the opticallyrelated behaviors (photovoltaic, photoemission, and photocatalyst effects) affected by order parameters such as charge, orbital, and lattice parameters

    Strain sensing with sub-micron sized Al-AlOx-Al tunnel junctions

    Full text link
    We demonstrate a local strain sensing method for nanostructures based on metallic Al tunnel junctions with AlOx barriers. The junctions were fabricated on top of a thin silicon nitride membrane, which was actuated with an AFM tip attached to a stiff cantilever. A large relative change in the tunneling resistance in response to the applied strain (gauge factor) was observed, up to a value 37. This facilitates local static strain variation measurements down to ~10^{-7}.Comment: 4 pages, 3 figure

    Spin lifetimes and strain-controlled spin precession of drifting electrons in zinc blende type semiconductors

    Full text link
    We study the transport of spin polarized electrons in n-GaAs using spatially resolved continuous wave Faraday rotation. From the measured steady state distribution, we determine spin relaxation times under drift conditions and, in the presence of strain, the induced spin splitting from the observed spin precession. Controlled variation of strain along [110] allows us to deduce the deformation potential causing this effect, while strain along [100] has no effect. The electric field dependence of the spin lifetime is explained quantitatively in terms of an increase of the electron temperature.Comment: 5 pages, 6 figure
    • …
    corecore